Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach.
نویسندگان
چکیده
A surface integral formulation for light scattering on periodic structures is presented. Electric and magnetic field equations are derived on the scatterers' surfaces in the unit cell with periodic boundary conditions. The solution is calculated with the method of moments and relies on the evaluation of the periodic Green's function performed with Ewald's method. The accuracy of this approach is assessed in detail. With this versatile boundary element formulation, a very large variety of geometries can be simulated, including doubly periodic structures on substrates and in multilayered media. The surface discretization shows a high flexibility, allowing the investigation of irregular shapes including fabrication accuracy. Deep insights into the extreme near-field of the scatterers as well as in the corresponding far-field are revealed. This method will find numerous applications for the design of realistic photonic nanostructures, in which light propagation is tailored to produce novel optical effects.
منابع مشابه
Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations
In this paper, scattering of a plane and monochromatic electromagnetic wave from a nano-wire is simulated using surface integral equations. First, integral equationsgoverning unknown fields on the surface is obtained based on Stratton-Cho surface integral equations. Then, the interaction of the wave with a non-plasmonic as well as a palsmonic nano-wire is considered. It is shown that in scatter...
متن کاملScattering on plasmonic nanostructures arrays modeled with a surface integral formulation
The surface integral formulation is a flexible, multiscale and accurate tool to simulate light scattering on nanostructures. Its generalization to periodic arrays is introduced in this paper. The general electromagnetic scattering problem is reduced to a discretizated model using the Method of Moments on the surface of the scatterers in the unit cell. The study of the resonances of an array of ...
متن کاملPhysical Optics Calculation of Electromagnetic Scattering From Haack Series Nose Cone
In this paper, the physical optics method is used to study the problem of electromagnetic scattering from Haack series nose cone. First, a meshing scheme is introduced which approximates the curvature of the surface by piecewise linear functions in both axial and rotational directions. This results in planar quadrilateral patches and enables efficient determination of the illuminated region and...
متن کاملSurface integral formulations for the design of plasmonic nanostructures.
Numerical formulations based on surface integral equations (SIEs) provide an accurate and efficient framework for the solution of the electromagnetic scattering problem by three-dimensional plasmonic nanostructures in the frequency domain. In this paper, we present a unified description of SIE formulations with both singular and nonsingular kernel and we study their accuracy in solving the scat...
متن کاملCasimir effects of nano objects in fluctuating scalar and electromagnetic fields: Thermodynamic investigating
Casimir entropy is an important aspect of casimir effect and at the nanoscale is visible. In this paper, we employ the path integral method to obtain a general relation for casimir entropy and internal energy of arbitrary shaped objects in the presence of two, three and four dimension scalar fields and the electromagnetic field. For this purpose, using Lagrangian and based on a perturb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 27 10 شماره
صفحات -
تاریخ انتشار 2010